Complete Algebra Formula Guide: Essential Math Formulas for Students|All Algebra Formulas You Must Know – From Basics to Advanced
Vidya Unnati Academy
VIDYA UNNATI ACCADEMY
Best Algebra Formulas Handbook – Quick Reference for Students.
Vidya Unnati Academy "Comprehensive Algebra Formulas," is a detailed collection of essential algebraic formulas, covering fundamental to advanced topics. It includes:
1. Basic Algebraic Identities – Expansions like , , and cube formulas.
2. Quadratic Equations – General form, roots formula, discriminant, and nature of roots.
3. Binomial Theorem – Expansion formula for any power .
4. Exponents & Logarithms – Power rules, logarithmic properties, and simplifications.
5. Polynomial Identities – Special polynomial factorization and expansion formulas.
6. Sequences & Series – Arithmetic and geometric progression formulas.
7. Matrices & Determinants – Basic determinant formulas, inverse, and multiplication rules.
8. Complex Numbers – Properties, modulus, conjugate, and De Moivre’s theorem.
This Post is useful for students preparing for exams like CBSE, ICSE, JEE, NEET, and competitive tests. It provides a quick reference for solving algebra.
Comprehensive Algebra Formulas
1. Basic Algebraic Identities
I. (a + b)² = a² + 2ab + b²
II. (a – b)² = a² - 2ab + b²
III. A² - b² = (a – b)(a + b)
IV. (x + a)(x + b) = x² + (a + b)x + ab
V. (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
VI. (a – b – c)² = a² + b² + c² - 2(ab + bc + ca)
VII. A³ + b³ = (a + b)(a² - ab + b²)
VIII. A³ - b³ = (a – b)(a² + ab + b²)
IX. (a + b)³ = a³ + 3a²b + 3ab² + b³
X. (a – b)³ = a³ - 3a²b + 3ab² - b³
2. Quadratic Equations
I. General form: ax² + bx + c = 0
II. Roots formula: x = (-b ± √(b² - 4ac)) / 2a
III. Sum of roots: α + β = -b/a
IV. Product of roots: αβ = c/a
V. Quadratic Discriminant: Δ = b² - 4ac
VI. Nature of Roots: If Δ > 0 → Real and distinct roots, If Δ = 0 → Real and equal roots, If Δ < 0 → Imaginary roots
3. Binomial Theorem
I. (a + b)^n = Σ (nCk * a^(n-k) * b^k) for k = 0 to n
4. Exponents and Logarithms
I. A^m * a^n = a^(m+n)
II. (a^m)ⁿ = a^(m*n)
III. A^0 = 1
IV. A^(-n) = 1/a^n
V. (ab)^n = a^n * b^n
VI. (a/b)^n = a^n / b^n
VII. Log(ab) = log a + log b
VIII. Log(a/b) = log a – log b
IX. Log(a^b) = b log a
X. Log(1) = 0
XI. Log(a) + log(b) = log(ab)
5. Polynomial Identities
I. (x – a)(x – b)(x – c)...(x – n) = 0
II. (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
III. X³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy – yz – zx)
IV. (x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x)
V. (x – y)⁵ = x⁵ - 5x⁴y + 10x³y² - 10x²y³ + 5xy⁴ - y⁵
6. Sequences and Series
I. Sum of first n natural numbers: Sₙ = n(n + 1) / 2
II. Sum of squares of first n natural numbers: Sₙ = n(n + 1)(2n + 1) / 6
III. Sum of cubes of first n natural numbers: Sₙ = (n(n + 1)/2)²
IV. Arithmetic Progression (AP): aₙ = a + (n-1)d
V. Sum of AP: Sₙ = n/2 (2a + (n-1)d)
VI. Geometric Progression (GP): aₙ = ar^(n-1)
VII. Sum of GP: Sₙ = a(1 – rⁿ) / (1 – r), for r ≠ 1
VIII. Infinite GP sum: S = a / (1 – r), for |r| < 1
7. Matrices and Determinants
I. Determinant of 2×2 matrix: |A| = ad – bc for A = |a b| |c d|
II. Inverse of a 2×2 matrix: A⁻¹ = (1/|A|) * |d -b| | -c a|
III. Multiplication rule: (AB)⁻¹ = B⁻¹A⁻¹
IV. Identity Matrix: I * A = A * I = A
V. Transpose of a matrix: (Aᵀ)ᵀ = A
VI. Cofactor Expansion: |A| = Σ aᵢⱼ * Cᵢⱼ
8. Complex Numbers
I. I² = -1
II. Complex number: z = a + bi
III. Modulus: |z| = √(a² + b²)
IV. Conjugate: z̅ = a – bi
V. Multiplication: (a + bi)(c + di) = (ac – bd) + (ad + bc)i
VI. De Moivre’s Theorem: (cosθ + i sinθ)ⁿ = cos(nθ) + i sin(nθ)
Follow:- vidyaunnatiacademy.
For more important topics.
Comments
Post a Comment
Thanks for the comment